测试条件:
测试开发板:S100。
测试核心数:单核。
性能数据获取频率设置为:5分钟时间内性能参数的平均值。
Python版本:Python3.10。
模型来源:OE包内 samples/ucp_tutorial/dnn/ai_benchmark/s100
路径下的模型。
运行环境:Linux。
缩写说明:
C = 计算量,单位为GOPs(十亿次运算/秒)。此数据通过调用 hbm_perf 接口获得。
FPS = 每秒帧率。此数据在开发板多线程运行ai_benchmark示例包/script路径下各模型子文件夹的 fps.sh 脚本获取,包含后处理。
ITC = 推理耗时,单位为ms(毫秒)。此数据在开发板单线程运行ai_benchmark示例包/script路径下各模型子文件夹的 latency.sh 脚本获取,不含后处理。
TCPP = 后处理耗时,单位为ms(毫秒)。此数据在开发板单线程运行ai_benchmark示例包/script路径下各模型子文件夹的 latency.sh 脚本获取。
RV = 单次推理读取数据量,单位为mb(兆比特)。此数据通过调用 hbm_perf 接口获得。
WV = 单次推理写入数据量,单位为mb(兆比特)。此数据通过调用 hbm_perf 接口获得。
MODEL NAME | INPUT SIZE | C(GOPs) | FPS | ITC(ms) | TCPP(ms) | ACCURACY | Dataset |
---|---|---|---|---|---|---|---|
MobileNetv1 | 1x3x224x224 | 1.14 | 4263.30 | 0.527 | 0.034 | Top1: 0.7373(FLOAT)/0.7297(INT8) | ImageNet |
MobileNetv2 | 1x3x224x224 | 0.63 | 4277.30 | 0.542 | 0.034 | Top1: 0.7217(FLOAT)/0.7144(INT8) | ImageNet |
ResNet50 | 1x3x224x224 | 7.72 | 1155.00 | 1.218 | 0.034 | Top1: 0.7703(FLOAT)/0.7677(INT8) | ImageNet |
GoogleNet | 1x3x224x224 | 3.00 | 2790.90 | 0.702 | 0.034 | Top1: 0.7018(FLOAT)/0.6998(INT8) | ImageNet |
EfficientNet_Lite0 | 1x224x224x3 | 0.77 | 3900.80 | 0.626 | 0.034 | Top1: 0.7479(FLOAT)/0.7453(INT8) | ImageNet |
EfficientNet_Lite1 | 1x240x240x3 | 1.20 | 3200.60 | 0.680 | 0.034 | Top1: 0.7652(FLOAT)/0.7609(INT8) | ImageNet |
EfficientNet_Lite2 | 1x260x260x3 | 1.72 | 2477.50 | 0.771 | 0.034 | Top1: 0.7734(FLOAT)/0.7697(INT8) | ImageNet |
EfficientNet_Lite3 | 1x280x280x3 | 2.77 | 1865.80 | 0.911 | 0.034 | Top1: 0.7917(FLOAT)/0.7895(INT8) | ImageNet |
EfficientNet_Lite4 | 1x300x300x3 | 5.11 | 1297.10 | 1.144 | 0.034 | Top1: 0.8063(FLOAT)/0.8043(INT8) | ImageNet |
Vargconvnet | 1x3x224x224 | 9.06 | 1408.70 | 1.061 | 0.034 | Top1: 0.7793(FLOAT)/0.7762(INT8) | ImageNet |
Efficientnasnet_m | 1x3x300x300 | 4.53 | 1468.50 | 1.029 | 0.034 | Top1: 0.7935(FLOAT)/0.7924(INT8) | ImageNet |
Efficientnasnet_s | 1x3x280x280 | 1.44 | 3313.20 | 0.643 | 0.034 | Top1: 0.7441(FLOAT)/0.7515(INT8) | ImageNet |
ResNet18 | 1x3x224x224 | 3.63 | 2553.80 | 0.729 | 0.034 | Top1: 0.7169(FLOAT)/0.7163(INT8) | ImageNet |
YOLOv2_Darknet19 | 1x3x608x608 | 62.94 | 226.19 | 4.793 | 0.305 | [IoU=0.50:0.95]= 0.2760(FLOAT)/0.2700(INT8) | COCO |
YOLOv3_Darknet53 | 1x3x416x416 | 65.86 | 212.55 | 5.150 | 1.746 | [IoU=0.50:0.95]= 0.3370(FLOAT)/0.3350(INT8) | COCO |
YOLOv5x_v2.0 | 1x3x672x672 | 243.85 | 62.24 | 16.593 | 5.907 | [IoU=0.50:0.95]= 0.4810(FLOAT)/0.4670(INT8) | COCO |
SSD_MobileNetv1 | 1x3x300x300 | 2.30 | 3194.00 | 0.727 | 0.198 | mAP: 0.7345(FLOAT)/0.7269(INT8) | VOC |
Centernet_resnet101 | 1x3x512x512 | 90.53 | 186.46 | 5.781 | 0.991 | [IoU=0.50:0.95]= 0.3420(FLOAT)/0.3270(INT8) | COCO |
YOLOv3_VargDarknet | 1x3x416x416 | 42.82 | 293.51 | 3.852 | 1.672 | [IoU=0.50:0.95]= 0.3280(FLOAT)/0.3270(INT8) | COCO |
Deeplabv3plus_efficientnetb0 | 1x3x1024x2048 | 30.77 | 151.51 | 7.016 | 0.314 | mIoU: 0.7630(FLOAT)/0.7569(INT8) | Cityscapes |
Fastscnn_efficientnetb0 | 1x3x1024x2048 | 12.48 | 249.25 | 4.422 | 0.315 | mIoU: 0.6997(FLOAT)/0.6914(INT8) | Cityscapes |
Deeplabv3plus_efficientnetm1 | 1x3x1024x2048 | 77.04 | 92.00 | 11.308 | 0.313 | mIoU: 0.7794(FLOAT)/0.7754(INT8) | Cityscapes |
Deeplabv3plus_efficientnetm2 | 1x3x1024x2048 | 124.15 | 64.62 | 15.921 | 0.312 | mIoU: 0.7882(FLOAT)/0.7853(INT8) | Cityscapes |
Bev_gkt_mixvargenet_multitask | image: 6x3x512x960 points(0-8): 6x64x64x2 | 207.16 | 68.40 | 15.872 | 5.367 | NDS: 0.2810(FLOAT)/0.2798(INT8) MeanIOU: 0.4852(FLOAT)/0.4838(INT8) mAP: 0.1991(FLOAT)/0.1995(INT8) | Nuscenes |
Bev_ipm_4d_efficientnetb0_multitask | image: 6x3x512x960 points: 6x128x128x2 prev_feat: 1x164x28x128 prev_point: 1x128x128x2 | 53.58 | 111.92 | 10.488 | 5.487 | NDS: 0.3721(FLOAT)/0.3725(INT8) MeanIOU: 0.5287(FLOAT)/0.5389(INT8) mAP: 0.2200(FLOAT)/0.2214(INT8) | Nuscenes |
Bev_ipm_efficientnetb0_multitask | image: 6x3x512x960 points: 6x128x128x2 | 52.97 | 115.12 | 9.838 | 5.334 | NDS: 0.3055(FLOAT)/0.3032(INT8) MeanIOU: 0.5145(FLOAT)/0.5104(INT8) mAP: 0.2169(FLOAT)/0.2168(INT8) | Nuscenes |
Bev_lss_efficientnetb0_multitask | image: 6x3x256x704 points(0&1): 10x128x128x2 | 24.06 | 187.16 | 6.494 | 5.417 | NDS: 0.3007(FLOAT)/0.2995(INT8) MeanIOU: 0.5180(FLOAT)/0.5148(INT8) mAP: 0.2062(FLOAT)/0.2042(INT8) | Nuscenes |
Detr3d_efficientnetb3 | coords(0-3): 6x4x256x2 image: 6x3x512x1408 masks: 1x4x256x24 | 227.71 | 32.08 | 31.877 | 1.122 | NDS: 0.3304(FLOAT)/0.3288(INT8) mAP: 0.2752(FLOAT)/0.2712(INT8) | Nuscenes |
Petr_efficientnetb3 | image: 6x3x512x1408 pos_embed: 1x96x44x256 | 219.17 | 19.25 | 52.643 | 1.140 | NDS: 0.3765(FLOAT)/0.3735(INT8) mAP: 0.3038(FLOAT)/0.2936(INT8) | Nuscenes |
Bevformer_tiny_resnet50_detection | img: 6x3x480x800 prev_bev: 1x2500x256 prev_bev_ref: 1x50x50x2 queries_rebatch_grid: 6x20x32x2 restore_bev_grid: 1x100x50x2 reference_points_rebatch: 6x640x4x2 bev_pillar_counts: 1x2500x1 | 387.29 | 31.17 | 42.108 | 1.412 | NDS: 0.3713(FLOAT)/0.3679(INT8) mAP: 0.2673(FLOAT)/0.2614(INT8) | Nuscenes |
Flashocc_henet_lss_occ3d_nuscenes | img: 6x3x512x960 points: 10x128x128x2 points_depth: 10x128x128x2 | 126.75 | 96.28 | 11.497 | 40.899 | mIoU: 0.3674(FLOAT)/0.3640(INT8) | Nuscenes |
Horizon_swin_transformer | 1x3x224x224 | 8.98 | 311.81 | 3.569 | 0.035 | Top1: 0.8024(FLOAT)/0.7955(INT8) | ImageNet |
Mixvargenet | 1x3x224x224 | 2.07 | 4432.40 | 0.534 | 0.034 | Top1: 0.7075(FLOAT)/0.7054(INT8) | ImageNet |
Vargnetv2 | 1x3x224x224 | 0.72 | 4027.10 | 0.593 | 0.034 | Top1: 0.7342(FLOAT)/0.7316(INT8) | ImageNet |
Vit_small | 1x3x224x224 | 9.20 | 547.19 | 2.185 | 0.035 | Top1: 0.7950(FLOAT)/0.7921(INT8) | ImageNet |
Centerpoint_pointpillar | points: 300000x5 voxel_feature: 1x5x20x40000 coors: 40000x4 | 127.73 | 124.77 | 16.555 | 14.028 | NDS: 0.5832(FLOAT)/0.5817(INT8) mAP: 0.4804(FLOAT)/0.4783(INT8) | Nuscenes |
Detr_efficientnetb3 | 1x3x800x1333 | 67.39 | 52.73 | 19.406 | 0.344 | [IoU=0.50:0.95]= 0.3721(FLOAT)/0.3599(INT8) | MS COCO |
Detr_resnet50 | 1x3x800x1333 | 203.07 | 40.25 | 25.385 | 0.343 | [IoU=0.50:0.95]= 0.3569(FLOAT)/0.3164(INT8) | MS COCO |
FCOS3D_efficientnetb0 | 1x3x512x896 | 19.94 | 447.98 | 3.346 | 2.745 | NDS: 0.3061(FLOAT)/0.3029(INT8) mAP: 0.2133(FLOAT)/0.2064(INT8) | nuscenes |
Fcos_efficientnetb0 | 1x3x512x512 | 5.02 | 1079.30 | 1.611 | 0.137 | [IoU=0.50:0.95]= 0.3626(FLOAT)/0.3564(INT8) | MS COCO |
Ganet_mixvargenet | 1x3x320x800 | 10.74 | 1514.30 | 1.051 | 0.219 | F1Score: 0.7948(FLOAT)/0.7878(INT8) | CuLane |
Keypoint_efficientnetb0 | 1x3x128x128 | 0.45 | 4289.70 | 0.547 | 0.068 | PCK(alpha=0.1): 0.9433(FLOAT)/0.9433(INT8) | Carfusion |
Pointpillars_kitti_car | 150000x4 | 66.82 | 144.65 | 33.240 | 0.539 | APDet= 0.7732(FLOAT)/0.7675(INT8) | Kitti3d |
Deformable_detr_resnet50 | 1x3x800x1333 | 408.94 | 5.30 | 190.060 | 15.533 | [IoU=0.50:0.95]= 0.4414(FLOAT)/0.4202(INT8) | MS COCO |
Stereonetplus_mixvargenet | 2x3x544x960 | 48.57 | 229.28 | 4.853 | 1.970 | EPE: 1.1270(FLOAT)/1.1346(INT8) | SceneFlow |
Centerpoint_mixvargnet_multitask | points: 300000x5 voxel_feature: 1x5x20x40000 coors: 40000x4 | 51.45 | 180.01 | 14.285 | 11.415 | NDS: 0.5809(FLOAT)/0.5751(INT8) MeanIOU: 0.9128(FLOAT)/0.9121(INT8) mAP: 0.4726(FLOAT)/0.4627(INT8) | Nuscenes |
Unet_mobilenetv1 | 1x3x1024x2048 | 7.36 | 819.01 | 1.709 | 0.148 | mIoU: 0.6802(FLOAT)/0.6758(INT8) | Cityscapes |
Motr_efficientnetb3 | image: 1x800x1422x3 track_query: 1x2x128x156 ref_points: 1x2x128x4 mask_query: 1x1x256x1 | 64.43 | 74.28 | 13.658 | 5.066 | MOTA: 0.5805(FLOAT)/0.5748(INT8) | Mot17 |
Densetnt_vectornet | goals_2d: 30x1x2048x2 goals_2d_mask: 30x1x2048x1 instance_mask: 30x1x96x1 lane_feat: 30x9x64x11 traj_feat: 30x19x32x9 | 12.50 | 104.27 | 10.427 | 2.306 | minFDA: 1.2975(FLOAT)/1.3059(INT8) | Argoverse 1 |
Maptroe_henet_tinym_bevformer | img: 6x3x480x800 osm_mask: 1x1x50x100 queries_rebatch_grid: 6x20x100x2 restore_bev_grid: 1x100x100x2 reference_points_rebatch: 6x2000x4x2 bev_pillar_counts: 1x5000x1 | 134.57 | 75.31 | 13.953 | 0.261 | mAP: 0.6633(FLOAT)/0.6569(INT8) | Nuscenes |
Qcnet_oe | valid_mask: 1x30x10 valid_mask_a2a: 1x10x30x30 agent_type: 1x30x1 x_a_cur: 1x1x30x1,1x1x30x1,1x1x30x1,1x1x30x1 r_pl2a_cur: 1x1x30x80,1x1x30x80,1x1x30x80 r_t_cur: 1x1x30x6,1x1x30x6,1x1x30x6,1x1x30x6 r_a2a_cur: 1x1x30x30,1x1x30x30,1x1x30x30 x_a_mid_emb: 1x30x2x128 x_a: 1x30x6x128 pl_type,is_intersection: 1x80 r_pl2pl: 1x1x80x80,1x1x80x80,1x1x80x80 r_pt2pl: 1x1x80x50,1x1x80x50,1x1x80x50 mask_pl2pl: 1x80x80 magnitude,pt_type,side,mask: 1x80x50 mask_a2m: 1x30x30 mask_dst: 1x30x1 type_pl2pl: 1x80x80 | 7.85 | 236.04 | 6.299 | 0.827 | hitrate: 0.8026(FLOAT)/0.7923(INT8) | Argoverse 2 |