模型性能Benchmark

说明

  • 测试条件:

    • 测试开发板:S100。

    • 测试核心数:单核。

    • 性能数据获取频率设置为:5分钟时间内性能参数的平均值。

    • Python版本:Python3.10。

    • 模型来源:OE包内 samples/ucp_tutorial/dnn/ai_benchmark/s100 路径下的模型。

    • 运行环境:Linux。

  • 缩写说明:

    • C = 计算量,单位为GOPs(十亿次运算/秒)。此数据通过调用 hbm_perf 接口获得。

    • FPS = 每秒帧率。此数据在开发板多线程运行ai_benchmark示例包/script路径下各模型子文件夹的 fps.sh 脚本获取,包含后处理。

    • ITC = 推理耗时,单位为ms(毫秒)。此数据在开发板单线程运行ai_benchmark示例包/script路径下各模型子文件夹的 latency.sh 脚本获取,不含后处理。

    • TCPP = 后处理耗时,单位为ms(毫秒)。此数据在开发板单线程运行ai_benchmark示例包/script路径下各模型子文件夹的 latency.sh 脚本获取。

    • RV = 单次推理读取数据量,单位为mb(兆比特)。此数据通过调用 hbm_perf 接口获得。

    • WV = 单次推理写入数据量,单位为mb(兆比特)。此数据通过调用 hbm_perf 接口获得。

模型主要性能数据

MODEL NAMEINPUT SIZEC(GOPs)FPSITC(ms)TCPP(ms)ACCURACYDataset
MobileNetv1

1x3x224x224

1.144263.300.5270.034

Top1:

0.7373(FLOAT)/0.7297(INT8)

ImageNet
MobileNetv2

1x3x224x224

0.634277.300.5420.034

Top1:

0.7217(FLOAT)/0.7144(INT8)

ImageNet
ResNet50

1x3x224x224

7.721155.001.2180.034

Top1:

0.7703(FLOAT)/0.7677(INT8)

ImageNet
GoogleNet

1x3x224x224

3.002790.900.7020.034

Top1:

0.7018(FLOAT)/0.6998(INT8)

ImageNet
EfficientNet_Lite0

1x224x224x3

0.773900.800.6260.034

Top1:

0.7479(FLOAT)/0.7453(INT8)

ImageNet
EfficientNet_Lite1

1x240x240x3

1.203200.600.6800.034

Top1:

0.7652(FLOAT)/0.7609(INT8)

ImageNet
EfficientNet_Lite2

1x260x260x3

1.722477.500.7710.034

Top1:

0.7734(FLOAT)/0.7697(INT8)

ImageNet
EfficientNet_Lite3

1x280x280x3

2.771865.800.9110.034

Top1:

0.7917(FLOAT)/0.7895(INT8)

ImageNet
EfficientNet_Lite4

1x300x300x3

5.111297.101.1440.034

Top1:

0.8063(FLOAT)/0.8043(INT8)

ImageNet
Vargconvnet

1x3x224x224

9.061408.701.0610.034

Top1:

0.7793(FLOAT)/0.7762(INT8)

ImageNet
Efficientnasnet_m

1x3x300x300

4.531468.501.0290.034

Top1:

0.7935(FLOAT)/0.7924(INT8)

ImageNet
Efficientnasnet_s

1x3x280x280

1.443313.200.6430.034

Top1:

0.7441(FLOAT)/0.7515(INT8)

ImageNet
ResNet18

1x3x224x224

3.632553.800.7290.034

Top1:

0.7169(FLOAT)/0.7163(INT8)

ImageNet
YOLOv2_Darknet19

1x3x608x608

62.94226.194.7930.305

[IoU=0.50:0.95]=

0.2760(FLOAT)/0.2700(INT8)

COCO
YOLOv3_Darknet53

1x3x416x416

65.86212.555.1501.746

[IoU=0.50:0.95]=

0.3370(FLOAT)/0.3350(INT8)

COCO
YOLOv5x_v2.0

1x3x672x672

243.8562.2416.5935.907

[IoU=0.50:0.95]=

0.4810(FLOAT)/0.4670(INT8)

COCO
SSD_MobileNetv1

1x3x300x300

2.303194.000.7270.198

mAP:

0.7345(FLOAT)/0.7269(INT8)

VOC
Centernet_resnet101

1x3x512x512

90.53186.465.7810.991

[IoU=0.50:0.95]=

0.3420(FLOAT)/0.3270(INT8)

COCO
YOLOv3_VargDarknet

1x3x416x416

42.82293.513.8521.672

[IoU=0.50:0.95]=

0.3280(FLOAT)/0.3270(INT8)

COCO
Deeplabv3plus_efficientnetb0

1x3x1024x2048

30.77151.517.0160.314

mIoU:

0.7630(FLOAT)/0.7569(INT8)

Cityscapes
Fastscnn_efficientnetb0

1x3x1024x2048

12.48249.254.4220.315

mIoU:

0.6997(FLOAT)/0.6914(INT8)

Cityscapes
Deeplabv3plus_efficientnetm1

1x3x1024x2048

77.0492.0011.3080.313

mIoU:

0.7794(FLOAT)/0.7754(INT8)

Cityscapes
Deeplabv3plus_efficientnetm2

1x3x1024x2048

124.1564.6215.9210.312

mIoU:

0.7882(FLOAT)/0.7853(INT8)

Cityscapes
Bev_gkt_mixvargenet_multitask

image:

6x3x512x960

points(0-8):

6x64x64x2

207.1668.4015.8725.367

NDS:

0.2810(FLOAT)/0.2798(INT8)

MeanIOU:

0.4852(FLOAT)/0.4838(INT8)

mAP:

0.1991(FLOAT)/0.1995(INT8)

Nuscenes
Bev_ipm_4d_efficientnetb0_multitask

image:

6x3x512x960

points:

6x128x128x2

prev_feat:

1x164x28x128

prev_point:

1x128x128x2

53.58111.9210.4885.487

NDS:

0.3721(FLOAT)/0.3725(INT8)

MeanIOU:

0.5287(FLOAT)/0.5389(INT8)

mAP:

0.2200(FLOAT)/0.2214(INT8)

Nuscenes
Bev_ipm_efficientnetb0_multitask

image:

6x3x512x960

points:

6x128x128x2

52.97115.129.8385.334

NDS:

0.3055(FLOAT)/0.3032(INT8)

MeanIOU:

0.5145(FLOAT)/0.5104(INT8)

mAP:

0.2169(FLOAT)/0.2168(INT8)

Nuscenes
Bev_lss_efficientnetb0_multitask

image:

6x3x256x704

points(0&1):

10x128x128x2

24.06187.166.4945.417

NDS:

0.3007(FLOAT)/0.2995(INT8)

MeanIOU:

0.5180(FLOAT)/0.5148(INT8)

mAP:

0.2062(FLOAT)/0.2042(INT8)

Nuscenes
Detr3d_efficientnetb3

coords(0-3):

6x4x256x2

image:

6x3x512x1408

masks:

1x4x256x24

227.7132.0831.8771.122

NDS:

0.3304(FLOAT)/0.3288(INT8)

mAP:

0.2752(FLOAT)/0.2712(INT8)

Nuscenes
Petr_efficientnetb3

image:

6x3x512x1408

pos_embed:

1x96x44x256

219.1719.2552.6431.140

NDS:

0.3765(FLOAT)/0.3735(INT8)

mAP:

0.3038(FLOAT)/0.2936(INT8)

Nuscenes
Bevformer_tiny_resnet50_detection

img:

6x3x480x800

prev_bev:

1x2500x256

prev_bev_ref:

1x50x50x2

queries_rebatch_grid:

6x20x32x2

restore_bev_grid:

1x100x50x2

reference_points_rebatch:

6x640x4x2

bev_pillar_counts:

1x2500x1

387.2931.1742.1081.412

NDS:

0.3713(FLOAT)/0.3679(INT8)

mAP:

0.2673(FLOAT)/0.2614(INT8)

Nuscenes
Flashocc_henet_lss_occ3d_nuscenes

img:

6x3x512x960

points:

10x128x128x2

points_depth:

10x128x128x2

126.7596.2811.49740.899

mIoU:

0.3674(FLOAT)/0.3640(INT8)

Nuscenes
Horizon_swin_transformer

1x3x224x224

8.98311.813.5690.035

Top1:

0.8024(FLOAT)/0.7955(INT8)

ImageNet
Mixvargenet

1x3x224x224

2.074432.400.5340.034

Top1:

0.7075(FLOAT)/0.7054(INT8)

ImageNet
Vargnetv2

1x3x224x224

0.724027.100.5930.034

Top1:

0.7342(FLOAT)/0.7316(INT8)

ImageNet
Vit_small

1x3x224x224

9.20547.192.1850.035

Top1:

0.7950(FLOAT)/0.7921(INT8)

ImageNet
Centerpoint_pointpillar

points:

300000x5

voxel_feature:

1x5x20x40000

coors:

40000x4

127.73124.7716.55514.028

NDS:

0.5832(FLOAT)/0.5817(INT8)

mAP:

0.4804(FLOAT)/0.4783(INT8)

Nuscenes
Detr_efficientnetb3

1x3x800x1333

67.3952.7319.4060.344

[IoU=0.50:0.95]=

0.3721(FLOAT)/0.3599(INT8)

MS COCO
Detr_resnet50

1x3x800x1333

203.0740.2525.3850.343

[IoU=0.50:0.95]=

0.3569(FLOAT)/0.3164(INT8)

MS COCO
FCOS3D_efficientnetb0

1x3x512x896

19.94447.983.3462.745

NDS:

0.3061(FLOAT)/0.3029(INT8)

mAP:

0.2133(FLOAT)/0.2064(INT8)

nuscenes
Fcos_efficientnetb0

1x3x512x512

5.021079.301.6110.137

[IoU=0.50:0.95]=

0.3626(FLOAT)/0.3564(INT8)

MS COCO
Ganet_mixvargenet

1x3x320x800

10.741514.301.0510.219

F1Score:

0.7948(FLOAT)/0.7878(INT8)

CuLane
Keypoint_efficientnetb0

1x3x128x128

0.454289.700.5470.068

PCK(alpha=0.1):

0.9433(FLOAT)/0.9433(INT8)

Carfusion
Pointpillars_kitti_car

150000x4

66.82144.6533.2400.539

APDet=

0.7732(FLOAT)/0.7675(INT8)

Kitti3d
Deformable_detr_resnet50

1x3x800x1333

408.945.30190.06015.533

[IoU=0.50:0.95]=

0.4414(FLOAT)/0.4202(INT8)

MS COCO
Stereonetplus_mixvargenet

2x3x544x960

48.57229.284.8531.970

EPE:

1.1270(FLOAT)/1.1346(INT8)

SceneFlow
Centerpoint_mixvargnet_multitask

points:

300000x5

voxel_feature:

1x5x20x40000

coors:

40000x4

51.45180.0114.28511.415

NDS:

0.5809(FLOAT)/0.5751(INT8)

MeanIOU:

0.9128(FLOAT)/0.9121(INT8)

mAP:

0.4726(FLOAT)/0.4627(INT8)

Nuscenes
Unet_mobilenetv1

1x3x1024x2048

7.36819.011.7090.148

mIoU:

0.6802(FLOAT)/0.6758(INT8)

Cityscapes
Motr_efficientnetb3

image:

1x800x1422x3

track_query:

1x2x128x156

ref_points:

1x2x128x4

mask_query:

1x1x256x1

64.4374.2813.6585.066

MOTA:

0.5805(FLOAT)/0.5748(INT8)

Mot17
Densetnt_vectornet

goals_2d:

30x1x2048x2

goals_2d_mask:

30x1x2048x1

instance_mask:

30x1x96x1

lane_feat:

30x9x64x11

traj_feat:

30x19x32x9

12.50104.2710.4272.306

minFDA:

1.2975(FLOAT)/1.3059(INT8)

Argoverse 1
Maptroe_henet_tinym_bevformer

img:

6x3x480x800

osm_mask:

1x1x50x100

queries_rebatch_grid:

6x20x100x2

restore_bev_grid:

1x100x100x2

reference_points_rebatch:

6x2000x4x2

bev_pillar_counts:

1x5000x1

134.5775.3113.9530.261

mAP:

0.6633(FLOAT)/0.6569(INT8)

Nuscenes
Qcnet_oe

valid_mask:

1x30x10

valid_mask_a2a:

1x10x30x30

agent_type:

1x30x1

x_a_cur:

1x1x30x1,1x1x30x1,1x1x30x1,1x1x30x1

r_pl2a_cur:

1x1x30x80,1x1x30x80,1x1x30x80

r_t_cur:

1x1x30x6,1x1x30x6,1x1x30x6,1x1x30x6

r_a2a_cur:

1x1x30x30,1x1x30x30,1x1x30x30

x_a_mid_emb:

1x30x2x128

x_a:

1x30x6x128

pl_type,is_intersection:

1x80

r_pl2pl:

1x1x80x80,1x1x80x80,1x1x80x80

r_pt2pl:

1x1x80x50,1x1x80x50,1x1x80x50

mask_pl2pl:

1x80x80

magnitude,pt_type,side,mask:

1x80x50

mask_a2m:

1x30x30

mask_dst:

1x30x1

type_pl2pl:

1x80x80

7.85236.046.2990.827

hitrate:

0.8026(FLOAT)/0.7923(INT8)

Argoverse 2

模型全部性能数据

MobileNetv1

  • INPUT SIZE: 1x3x224x224
  • C(GOPs): 1.14
  • FPS: 4263.30
  • ITC(ms): 0.527
  • TCPP(ms): 0.034
  • RV(mb): 4.56
  • WV(mb): 0.0038
  • Dataset: ImageNet
  • ACCURACY: Top1: 0.7373(FLOAT)/0.7297(INT8)

MobileNetv2

  • INPUT SIZE: 1x3x224x224
  • C(GOPs): 0.63
  • FPS: 4277.30
  • ITC(ms): 0.542
  • TCPP(ms): 0.034
  • RV(mb): 3.95
  • WV(mb): 0.0038
  • Dataset: ImageNet
  • ACCURACY: Top1: 0.7217(FLOAT)/0.7144(INT8)

ResNet50

  • INPUT SIZE: 1x3x224x224
  • C(GOPs): 7.72
  • FPS: 1155.00
  • ITC(ms): 1.218
  • TCPP(ms): 0.034
  • RV(mb): 26.08
  • WV(mb): 0.0038
  • Dataset: ImageNet
  • ACCURACY: Top1: 0.7703(FLOAT)/0.7677(INT8)

GoogleNet

EfficientNet_Lite0

EfficientNet_Lite1

EfficientNet_Lite2

EfficientNet_Lite3

EfficientNet_Lite4

Vargconvnet

Efficientnasnet_m

Efficientnasnet_s

ResNet18

  • INPUT SIZE: 1x3x224x224
  • C(GOPs): 3.63
  • FPS: 2553.80
  • ITC(ms): 0.729
  • TCPP(ms): 0.034
  • RV(mb): 11.86
  • WV(mb): 0.00000000
  • Dataset: ImageNet
  • ACCURACY: Top1: 0.7169(FLOAT)/0.7163(INT8)

YOLOv2_Darknet19

  • INPUT SIZE: 1x3x608x608
  • C(GOPs): 62.94
  • FPS: 226.19
  • ITC(ms): 4.793
  • TCPP(ms): 0.305
  • RV(mb): 52.24
  • WV(mb): 1.07
  • Dataset: COCO
  • ACCURACY: [IoU=0.50:0.95]= 0.2760(FLOAT)/0.2700(INT8)
  • LINKS: https://pjreddie.com/darknet/yolo

YOLOv3_Darknet53

  • INPUT SIZE: 1x3x416x416
  • C(GOPs): 65.86
  • FPS: 212.55
  • ITC(ms): 5.150
  • TCPP(ms): 1.746
  • RV(mb): 68.68
  • WV(mb): 9.40
  • Dataset: COCO
  • ACCURACY: [IoU=0.50:0.95]= 0.3370(FLOAT)/0.3350(INT8)
  • LINKS: https://github.com/ChenYingpeng/caffe-yolov3/

YOLOv5x_v2.0

SSD_MobileNetv1

  • INPUT SIZE: 1x3x300x300
  • C(GOPs): 2.30
  • FPS: 3194.00
  • ITC(ms): 0.727
  • TCPP(ms): 0.198
  • RV(mb): 6.24
  • WV(mb): 0.20
  • Dataset: VOC
  • ACCURACY: mAP: 0.7345(FLOAT)/0.7269(INT8)
  • LINKS: https://github.com/chuanqi305/MobileNet-SSD

Centernet_resnet101

YOLOv3_VargDarknet

Deeplabv3plus_efficientnetb0

Fastscnn_efficientnetb0

Deeplabv3plus_efficientnetm1

Deeplabv3plus_efficientnetm2

Bev_gkt_mixvargenet_multitask

  • INPUT SIZE: image: 6x3x512x960 points(0-8): 6x64x64x2
  • C(GOPs): 207.16
  • FPS: 68.40
  • ITC(ms): 15.872
  • TCPP(ms): 5.367
  • RV(mb): 120.84
  • WV(mb): 95.22
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.2810(FLOAT)/0.2798(INT8) MeanIOU: 0.4852(FLOAT)/0.4838(INT8) mAP: 0.1991(FLOAT)/0.1995(INT8)

Bev_ipm_4d_efficientnetb0_multitask

  • INPUT SIZE: image: 6x3x512x960 points: 6x128x128x2 prev_feat: 1x164x28x128 prev_point: 1x128x128x2
  • C(GOPs): 53.58
  • FPS: 111.92
  • ITC(ms): 10.488
  • TCPP(ms): 5.487
  • RV(mb): 63.20
  • WV(mb): 49.93
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.3721(FLOAT)/0.3725(INT8) MeanIOU: 0.5287(FLOAT)/0.5389(INT8) mAP: 0.2200(FLOAT)/0.2214(INT8)

Bev_ipm_efficientnetb0_multitask

  • INPUT SIZE: image: 6x3x512x960 points: 6x128x128x2
  • C(GOPs): 52.97
  • FPS: 115.12
  • ITC(ms): 9.838
  • TCPP(ms): 5.334
  • RV(mb): 59.90
  • WV(mb): 47.84
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.3055(FLOAT)/0.3032(INT8) MeanIOU: 0.5145(FLOAT)/0.5104(INT8) mAP: 0.2169(FLOAT)/0.2168(INT8)

Bev_lss_efficientnetb0_multitask

  • INPUT SIZE: image: 6x3x256x704 points(0&1): 10x128x128x2
  • C(GOPs): 24.06
  • FPS: 187.16
  • ITC(ms): 6.494
  • TCPP(ms): 5.417
  • RV(mb): 25.43
  • WV(mb): 18.99
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.3007(FLOAT)/0.2995(INT8) MeanIOU: 0.5180(FLOAT)/0.5148(INT8) mAP: 0.2062(FLOAT)/0.2042(INT8)

Detr3d_efficientnetb3

  • INPUT SIZE: coords(0-3): 6x4x256x2 image: 6x3x512x1408 masks: 1x4x256x24
  • C(GOPs): 227.71
  • FPS: 32.08
  • ITC(ms): 31.877
  • TCPP(ms): 1.122
  • RV(mb): 333.71
  • WV(mb): 175.58
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.3304(FLOAT)/0.3288(INT8) mAP: 0.2752(FLOAT)/0.2712(INT8)

Petr_efficientnetb3

  • INPUT SIZE: image: 6x3x512x1408 pos_embed: 1x96x44x256
  • C(GOPs): 219.17
  • FPS: 19.25
  • ITC(ms): 52.643
  • TCPP(ms): 1.140
  • RV(mb): 260.88
  • WV(mb): 144.23
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.3765(FLOAT)/0.3735(INT8) mAP: 0.3038(FLOAT)/0.2936(INT8)

Bevformer_tiny_resnet50_detection

  • INPUT SIZE: img: 6x3x480x800 prev_bev: 1x2500x256 prev_bev_ref: 1x50x50x2 queries_rebatch_grid: 6x20x32x2 restore_bev_grid: 1x100x50x2 reference_points_rebatch: 6x640x4x2 bev_pillar_counts: 1x2500x1
  • C(GOPs): 387.29
  • FPS: 31.17
  • ITC(ms): 42.108
  • TCPP(ms): 1.412
  • RV(mb): 265.57
  • WV(mb): 175.41
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.3713(FLOAT)/0.3679(INT8) mAP: 0.2673(FLOAT)/0.2614(INT8)

Flashocc_henet_lss_occ3d_nuscenes

  • INPUT SIZE: img: 6x3x512x960 points: 10x128x128x2 points_depth: 10x128x128x2
  • C(GOPs): 126.75
  • FPS: 96.28
  • ITC(ms): 11.497
  • TCPP(ms): 40.899
  • RV(mb): 87.37
  • WV(mb): 55.02
  • Dataset: Nuscenes
  • ACCURACY: mIoU: 0.3674(FLOAT)/0.3640(INT8)

Horizon_swin_transformer

  • INPUT SIZE: 1x3x224x224
  • C(GOPs): 8.98
  • FPS: 311.81
  • ITC(ms): 3.569
  • TCPP(ms): 0.035
  • RV(mb): 46.27
  • WV(mb): 6.82
  • Dataset: ImageNet
  • ACCURACY: Top1: 0.8024(FLOAT)/0.7955(INT8)

Mixvargenet

  • INPUT SIZE: 1x3x224x224
  • C(GOPs): 2.07
  • FPS: 4432.40
  • ITC(ms): 0.534
  • TCPP(ms): 0.034
  • RV(mb): 2.51
  • WV(mb): 0.0038
  • Dataset: ImageNet
  • ACCURACY: Top1: 0.7075(FLOAT)/0.7054(INT8)

Vargnetv2

  • INPUT SIZE: 1x3x224x224
  • C(GOPs): 0.72
  • FPS: 4027.10
  • ITC(ms): 0.593
  • TCPP(ms): 0.034
  • RV(mb): 4.68
  • WV(mb): 0.0038
  • Dataset: ImageNet
  • ACCURACY: Top1: 0.7342(FLOAT)/0.7316(INT8)

Vit_small

  • INPUT SIZE: 1x3x224x224
  • C(GOPs): 9.20
  • FPS: 547.19
  • ITC(ms): 2.185
  • TCPP(ms): 0.035
  • RV(mb): 26.27
  • WV(mb): 0.00000000
  • Dataset: ImageNet
  • ACCURACY: Top1: 0.7950(FLOAT)/0.7921(INT8)

Centerpoint_pointpillar

  • INPUT SIZE: points: 300000x5 voxel_feature: 1x5x20x40000 coors: 40000x4
  • C(GOPs): 127.73
  • FPS: 124.77
  • ITC(ms): 16.555
  • TCPP(ms): 14.028
  • RV(mb): 51.20
  • WV(mb): 26.87
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.5832(FLOAT)/0.5817(INT8) mAP: 0.4804(FLOAT)/0.4783(INT8)

Detr_efficientnetb3

  • INPUT SIZE: 1x3x800x1333
  • C(GOPs): 67.39
  • FPS: 52.73
  • ITC(ms): 19.406
  • TCPP(ms): 0.344
  • RV(mb): 261.91
  • WV(mb): 134.85
  • Dataset: MS COCO
  • ACCURACY: [IoU=0.50:0.95]= 0.3721(FLOAT)/0.3599(INT8)

Detr_resnet50

  • INPUT SIZE: 1x3x800x1333
  • C(GOPs): 203.07
  • FPS: 40.25
  • ITC(ms): 25.385
  • TCPP(ms): 0.343
  • RV(mb): 376.39
  • WV(mb): 240.01
  • Dataset: MS COCO
  • ACCURACY: [IoU=0.50:0.95]= 0.3569(FLOAT)/0.3164(INT8)

FCOS3D_efficientnetb0

  • INPUT SIZE: 1x3x512x896
  • C(GOPs): 19.94
  • FPS: 447.98
  • ITC(ms): 3.346
  • TCPP(ms): 2.745
  • RV(mb): 11.23
  • WV(mb): 4.17
  • Dataset: nuscenes
  • ACCURACY: NDS: 0.3061(FLOAT)/0.3029(INT8) mAP: 0.2133(FLOAT)/0.2064(INT8)

Fcos_efficientnetb0

  • INPUT SIZE: 1x3x512x512
  • C(GOPs): 5.02
  • FPS: 1079.30
  • ITC(ms): 1.611
  • TCPP(ms): 0.137
  • RV(mb): 6.08
  • WV(mb): 2.61
  • Dataset: MS COCO
  • ACCURACY: [IoU=0.50:0.95]= 0.3626(FLOAT)/0.3564(INT8)

Ganet_mixvargenet

  • INPUT SIZE: 1x3x320x800
  • C(GOPs): 10.74
  • FPS: 1514.30
  • ITC(ms): 1.051
  • TCPP(ms): 0.219
  • RV(mb): 2.13
  • WV(mb): 0.45
  • Dataset: CuLane
  • ACCURACY: F1Score: 0.7948(FLOAT)/0.7878(INT8)

Keypoint_efficientnetb0

  • INPUT SIZE: 1x3x128x128
  • C(GOPs): 0.45
  • FPS: 4289.70
  • ITC(ms): 0.547
  • TCPP(ms): 0.068
  • RV(mb): 4.61
  • WV(mb): 0.00000000
  • Dataset: Carfusion
  • ACCURACY: PCK(alpha=0.1): 0.9433(FLOAT)/0.9433(INT8)

Pointpillars_kitti_car

  • INPUT SIZE: 150000x4
  • C(GOPs): 66.82
  • FPS: 144.65
  • ITC(ms): 33.240
  • TCPP(ms): 0.539
  • RV(mb): 70.72
  • WV(mb): 30.65
  • Dataset: Kitti3d
  • ACCURACY: APDet= 0.7732(FLOAT)/0.7675(INT8)

Deformable_detr_resnet50

  • INPUT SIZE: 1x3x800x1333
  • C(GOPs): 408.94
  • FPS: 5.30
  • ITC(ms): 190.060
  • TCPP(ms): 15.533
  • RV(mb): 3495.68
  • WV(mb): 2485.77
  • Dataset: MS COCO
  • ACCURACY: [IoU=0.50:0.95]= 0.4414(FLOAT)/0.4202(INT8)

Stereonetplus_mixvargenet

  • INPUT SIZE: 2x3x544x960
  • C(GOPs): 48.57
  • FPS: 229.28
  • ITC(ms): 4.853
  • TCPP(ms): 1.970
  • RV(mb): 27.85
  • WV(mb): 25.86
  • Dataset: SceneFlow
  • ACCURACY: EPE: 1.1270(FLOAT)/1.1346(INT8)

Centerpoint_mixvargnet_multitask

  • INPUT SIZE: points: 300000x5 voxel_feature: 1x5x20x40000 coors: 40000x4
  • C(GOPs): 51.45
  • FPS: 180.01
  • ITC(ms): 14.285
  • TCPP(ms): 11.415
  • RV(mb): 32.49
  • WV(mb): 18.87
  • Dataset: Nuscenes
  • ACCURACY: NDS: 0.5809(FLOAT)/0.5751(INT8) MeanIOU: 0.9128(FLOAT)/0.9121(INT8) mAP: 0.4726(FLOAT)/0.4627(INT8)

Unet_mobilenetv1

  • INPUT SIZE: 1x3x1024x2048
  • C(GOPs): 7.36
  • FPS: 819.01
  • ITC(ms): 1.709
  • TCPP(ms): 0.148
  • RV(mb): 12.46
  • WV(mb): 7.59
  • Dataset: Cityscapes
  • ACCURACY: mIoU: 0.6802(FLOAT)/0.6758(INT8)

Motr_efficientnetb3

  • INPUT SIZE: image: 1x800x1422x3 track_query: 1x2x128x156 ref_points: 1x2x128x4 mask_query: 1x1x256x1
  • C(GOPs): 64.43
  • FPS: 74.28
  • ITC(ms): 13.658
  • TCPP(ms): 5.066
  • RV(mb): 110.89
  • WV(mb): 43.96
  • Dataset: Mot17
  • ACCURACY: MOTA: 0.5805(FLOAT)/0.5748(INT8)

Densetnt_vectornet

  • INPUT SIZE: goals_2d: 30x1x2048x2 goals_2d_mask: 30x1x2048x1 instance_mask: 30x1x96x1 lane_feat: 30x9x64x11 traj_feat: 30x19x32x9
  • C(GOPs): 12.50
  • FPS: 104.27
  • ITC(ms): 10.427
  • TCPP(ms): 2.306
  • RV(mb): 53.07
  • WV(mb): 33.36
  • Dataset: Argoverse 1
  • ACCURACY: minFDA: 1.2975(FLOAT)/1.3059(INT8)

Maptroe_henet_tinym_bevformer

  • INPUT SIZE: img: 6x3x480x800 osm_mask: 1x1x50x100 queries_rebatch_grid: 6x20x100x2 restore_bev_grid: 1x100x100x2 reference_points_rebatch: 6x2000x4x2 bev_pillar_counts: 1x5000x1
  • C(GOPs): 134.57
  • FPS: 75.31
  • ITC(ms): 13.953
  • TCPP(ms): 0.261
  • RV(mb): 121.58
  • WV(mb): 36.83
  • Dataset: Nuscenes
  • ACCURACY: mAP: 0.6633(FLOAT)/0.6569(INT8)

Qcnet_oe

  • INPUT SIZE: valid_mask: 1x30x10 valid_mask_a2a: 1x10x30x30 agent_type: 1x30x1 x_a_cur: 1x1x30x1,1x1x30x1,1x1x30x1,1x1x30x1 r_pl2a_cur: 1x1x30x80,1x1x30x80,1x1x30x80 r_t_cur: 1x1x30x6,1x1x30x6,1x1x30x6,1x1x30x6 r_a2a_cur: 1x1x30x30,1x1x30x30,1x1x30x30 x_a_mid_emb: 1x30x2x128 x_a: 1x30x6x128 pl_type,is_intersection: 1x80 r_pl2pl: 1x1x80x80,1x1x80x80,1x1x80x80 r_pt2pl: 1x1x80x50,1x1x80x50,1x1x80x50 mask_pl2pl: 1x80x80 magnitude,pt_type,side,mask: 1x80x50 mask_a2m: 1x30x30 mask_dst: 1x30x1 type_pl2pl: 1x80x80
  • C(GOPs): 7.85
  • FPS: 236.04
  • ITC(ms): 6.299
  • TCPP(ms): 0.827
  • RV(mb): 37.89
  • WV(mb): 18.03
  • Dataset: Argoverse 2
  • ACCURACY: hitrate: 0.8026(FLOAT)/0.7923(INT8)